登录         注册

近年来,互联网金融的迅猛发展,对线上线下金融机构的风险控制都带来了较大的挑战。一方面,以商业银行为代表的传统金融机构,其主流风控策略主要以央行征信报告为主要数据源,以专家经验或专家规则为评判策略。过于定性的风控方法,虽然降低了坏账率,但是不利于业务发展,容易错失很多有效客户;另一方面,许多新兴的互联网金融机构,由于所掌握的客户信息有限,风控经验的薄弱和风控执行手段不够专业,其逾期率和坏账率远超于银行。

好在随着移动互联网时代的来临,从电子商务到互联网金融,人们在网络上产生的数据"足迹"越来越多,大数据已经成为当前金融机构加强风险控制的重要补充手段。

大数据征信开启风控新格局

大数据征信是利用数据分析和模型进行风险评估,依据评估分数,预测还款人的还款能力、还款意愿、以及欺诈风险。在金融风控领域,大数据指的是全量数据和用户行为数据。目前使用的是围绕客户周围的与客户信用情况高度相关的数据,利用数据实施科学风控。

与传统征信相比,大数据的助力将带来以下三大益处。

首先,大数据征信模型可以使信用评价更精准。

大数据征信模型将海量数据纳入征信体系,并以多个信用模型进行多角度分析,以美国互联网金融公司ZestFinance为例,它的模型基本会处理3500个数据项,提取近70000个变量,利用身份验证模型、欺诈模型、还款能力模型等十余个模型进行分析,使评价结果更加全面准确,是模型评估性能大大提高。

其次,大数据征信能纳入更为多样性的行为数据。

大数据时代,每个相关机构都在最大程度上设法获取行为主体的数据信息,使数据在最大程度上覆盖广泛、实时鲜活。

过去,征信机构对于企业和个人信息的搜集相对比较困难,数据搜集数量也比较有限。随着互联网和大数据的普及,依托于大数据和云计算技术优势,可挖掘大量数据碎片中的关联性,推动数据统计模型不断完善,更加科学的反映用户的信用状况。

大数据风控的一个最大的优势就是丰富了信用风险评估的数据维度,征信数据规模越来越大,数据维度越来越广,模型不断迭代优化,大数据等新兴技术正在成为征信行业突破传统瓶颈的重要手段。

最后,大数据征信带来了更为时效性的评判标准。

传统风控的另外一个缺点是缺乏实效性数据的输入,其风控模型反映的往往是滞后数据的结果。利用滞后数据的评估结果来管理信用风险,本身产生的结构性风险就较大。

大数据的数据采集和计算能力,可以帮助企业建立实时的风险管理视图。借助于全面多纬度的数据、自我学习能力的风控模型、实时计算结果,企业可以提升量化风险评估能力。

不过,虽然大数据征信能够降低信息不对称,更全面地了解授信对象,并增加反欺诈能力,同时更精准的进行风险定价,但目前还不能完全取代传统征信。大数据风控可以从数据维度和分析角度提升传统风控水平,是一个必要的补充,可以让传统风控更加科学严谨,但目前由于覆盖率、匹配率等问题,不能完全取代传统风控。

大数据征信评估有望对金融机构降低信用风险和欺诈风险带来显著效果。因此金融机构在设计授信政策时,不妨多维度使用征信产品数据,实现全流程大数据风控,从不同角度筛选不良客户。


  • 中华人民共和国《企业征信业务备案证》编号:14003 人民银行备案信用代码:G1015010301246690U
  • COPYRIGHT © 2016,www.nanguazhengxin.com/www.zxfu.com,ALL RIGHTS RESERVED
  • 版权所有:内蒙古南瓜征信管理有限公司 工信部备案号:蒙ICP备16001544号-1 16001544号-2
  • 公安局备案号150121020 00132